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Abstract

Linear differential equations with polynomial coefficients over a field K of
positive characteristic p with local exponents in the prime field have a basis of
solutions in the differential extension Rp = K(z1, z2, . . .)((x)) of K(x), where
x′ = 1, z′1 = 1/x and z′i = z′i−1/zi−1. For differential equations of order 1 it
is shown that there exists a solution y whose projections y|zi+1=zi+2=···=0 are
algebraic over the field of rational functions K(x, z1, . . . , zi) for all i. This can
be seen as a characteristic p analogue of Abel’s problem about the algebraicity
of logarithmic integrals. Further, the existence of infinite product representa-
tions of these solutions is shown. As a main tool pi-curvatures are introduced,
generalizing the notion of the p-curvature.

1 Introduction

Niels Abel asked for criteria when a differential equation of the form

y′

y
= a (1)

has, for a a complex polynomial or a rational (respectively, algebraic) function, an
algebraic solution y (see Boulanger [Bou97, p. 93]). A necessary condition is that

a has only simple poles, as is the case for y′

y , for any holomorphic or meromorphic

y. For instance, if b is a rational function and k ∈ Z \ {0}, then a := 1
k
b′

b yields the

algebraic solution y = k
√
b. Algorithmically, the problem has been solved by Risch

[Ris70]. In the present note, we address a similar problem for first order differen-
tial equations defined over a field K of positive characteristic p. A first distinction
is the fact that equations like (1) need not have formal power series solutions, or,
more generally, solutions of the form xρf for some power series f ∈ K[[x]] and some
ρ ∈ K. For instance, the exponential function exp ∈ Q[[x]], solution of y′ = y, cannot
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be reduced modulo p to obtain a solution in Fp[[x]], for any prime p, as all prime
numbers appear in the denominators of the coefficients. And, indeed, making an
unknown ansatz y =

∑
i cix

i for the solution in characteristic p, and solving for the
coefficients ci ∈ K recursively, a contradiction occurs once i reaches p.

In [FH23] Fürnsinn and Hauser introduce the differential extension

Rp = Fp(z1, z2, . . .)((x))

of the field of formal Laurent series Fp((x)) by adjoining countably many variables
zi, equipped with the derivation given by

∂1 = 0, ∂x = 1,

∂z1 =
1

x
, ∂zi =

∂zi−1

zi−1
=

1

x · z1 · · · zi−1
for i > 1.

The ring of constants is Cp := Rp
p = Fp(z

p
1 , z

p
2 , . . .)((x

p)). It is proven that any
differential equation Ly = 0, for L ∈ Fp[[x]][∂] an operator of order n with regular
singularity at 0 and local exponents in the prime field, has n Cp-linearly independent
solutions in Rp, and even in Fp[z1, z2, . . .][[x]], the ring of power series in x with
polynomial coefficients in the zi.

For elements in Rp, the notion of algebraicity is more subtle. In general, a
solution y of Ly = 0 inRp will depend on infinitely many variables zi, so y will almost
never be algebraic over Fp(x, z1, z2, . . .). But, for a given y ∈ Fp[z1, z2, . . .][[x]], it is
interesting to ask if at least its projections y|zi+1=zi+2=···=0 obtained by setting almost
all z-variables equal to 0, are algebraic over Fp(x, z1, z2, . . . , zi). Said differently, can
y be approximated by algebraic series, involving more and more z-variables? This
suggests:

Problem 1.1. Let Ly = 0 be a differential equation with regular singularity at 0
and polynomial or algebraic power series coefficients. Does there exist a Cp-basis of
solutions y1, . . . , yn ∈ Fp[z1, z2, . . .][[x]] for which all projections yj |zi+1=zi+2=···=0 are
algebraic over Fp(x, z1, . . . , zi)?

In particular, one may ask whether the initial series yj |z1=z2=···=0 ∈ Fp[[x]] of the
basis are algebraic?

For first order differential equations the answer is positive:

Theorem 1.2. Let y′−ay = 0 be a linear differential equation of order 1, regular at
0, with local exponent ρ = 0 for some algebraic a ∈ Fp((x)). Then there is a non-zero
solution y ∈ Fp[z1, z2, . . .][[x]] which has algebraic projections y|zi+1=···=0 for all i.

One even has an infinite product decomposition of the solution:

Theorem 1.3. In the preceding situation, the specified solution y can be written as
a product

y =

∞∏
i=0

hi,

where the factors hi belong to 1 + xp
i
ziFp[z1, z2, . . . , zi][[x]] and are algebraic over

Fp(x, z1, . . . , zi).
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Structure of the paper. In Section 2 we revise the basic setup for solving dif-
ferential equations in Rp. Then variations and consequences of Problem 1.1 will be
dsicussed.

Section 3 is concerned with the exponential function in positive characteristic.
Solutions of y′ = y are only unique up to multiplication with elements in Cp. We
will choose and construct a distinguished solution, denoted by expp, according to
the theory described in Section 2. It is then shown that for this solution expp,
the projections expp |zi=zi+1=···=0 are algebraic for all i. The proof makes a small
detour: One shows that another, specifically chosen solution ẽxpp of y′ = y, admits
an infinite product decomposition with algebraic factors. And then a general result
(see 2.4) implies that also expp must have been algebraic.

Arbitrary first order differential equations will then be addressed in Section 4,
aiming at a proof of Theorem 1.2. We will generalize the concept of the p-curvature
by introducing higher curvatures, called pi-curvature, for any i ≥ 1. These curva-
tures share many properties with the classical p-curvature, but take into account the
variables zi and yield finer information. This is then used in Section 5 to develop the
proof of Theorem 1.2. In the final part, Section 6, we investigate the second order
equations y′′ = ±y in order to compare the characteristic p trigonometric functions
with the exponential function.

2 On Fuchs’ Theorem in Positive Characteristic

In this section, we first recall the main definitions and results from [FH23], reformu-
late them to fit our needs in this paper and make Problem 1.1 more precise.

The theory of power series solutions of linear homogeneous differential equations
in characteristic p involving logarithms was initiated by Honda [Hon81]. Dwork
[Dwo90] studied the case of nilpotent p-curvature and Fürnsinn and Hauser estab-
lished the complete description of the solutions of arbitrary differential equations
with regular singularities in [FH23]. In all three cases one has to introduce certain
differential extensions of K[[x]].

Let us fix some notation. Let p = charK be a prime number and

L = an∂
n + an−1∂

n−1 + . . .+ a1∂ + a0 ∈ K[[x]][∂]

be a differential operator with power series coefficients ai ∈ K[[x]] over a field of
characteristic p. We assume L to be regular at 0, i.e., that the quotient ai/an has
a pole of order at most n− i in 0. Write L =

∑n
j=0

∑∞
i=0 cijx

i∂j with cij ∈ K. We
define the initial form L0 of L as the operator

L0 =
∑

i−j=τ

cijx
i∂j ,

where τ is the minimal shift i − j of L. We will restrict without loss of generality
to differential operators with minimum shift τ = 0; this can be achieved by multi-
plication of L with a suitable power of x. Consequently L0(x

k) = χL(k)x
k, where

χL ∈ K[s] is the indicial polynomial of L; its roots ρ are called the local exponents
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of L.

In this text we will assume for simplicity that K = Fp and that the local expo-
nents belong to Fp, i.e., that the indicial polynomial splits over Fp. For general fields
and local exponents, the theory extends as described in [FH23], where the added
difficulties are mostly being of technical and notational nature.

As explained in Section 1, define Rp := Fp(z1, z2, . . .)((x)) as the field of Lau-
rent series in x with rational functions in countably many variables zi as coefficients
equipped with the aforementioned derivation. This derivation rule resembles the dif-
ferentiation of the iterated (complex) logarithm log(. . . log(x) . . .). We will therefore
call the variables zi colloquially logarithms. The definition is motivated by the need
to provide for any element of Rp a primitive under the derivation. For example,
while xp−1 does not have a primitive in Fp[[x]], we have (xpz1)

′ = xp−1 ∈ Rp. As
usual we will write y′ instead of ∂y for y ∈ Rp. The field of constants of Rp turns
out to be Cp := Fp(z

p
1 , z

p
2 , . . .)((x

p)) [FH23, Prop. 3.3].

Any differential operator L ∈ Fp[[x]][∂] defines a Cp-linear map

L : Rp → Rp, y 7→ L(y),

applying L to series y ∈ Rp. Similarly, its initial form L0 and its tail T = L0 − L
define Cp-linear maps. We represent the local exponents for convenience by integers
between 0 and p− 1. With this convention, it is is easy to see that the monomial

xρzi
∗

for ρ a local exponent and 0 ≤ i ≤ mρ − 1,

with exponents i∗ defined by

i∗ = (i, ⌊i/p⌋, ⌊i/p2⌋, ...) ∈ N(N)

form a monomial Cp-basis of the kernel KerL0 of L0, i.e., of the solution space of
L0y = 0 in Rp [FH23, Prop. 3.9]. Here zα for α ∈ N(N) denotes zα1

1 · · · zαk
k where

k ∈ N is maximal, such that αk ̸= 0.

To formulate Fuchs’ Theorem in positive characteristic, it is necessary to choose
a direct complementH of KerL0 inRp as a Cp-vector space, say, of the solution space
of the Euler equation L0y = 0 associated to Ly = 0. There are several choices for
H, and we will discuss one particular below. The restriction L0|H of L0 to H defines
an isomorphism onto the image, which is shown to be again Rp, using the fact that
the differential field Rp contains sufficiently many primitives. Let S : Rp → H be
the inverse of L0|H, i.e., a section (or right inverse) of L0. We get a Cp-linear map

v : Rp → H, y 7→ v(y) =
∞∑
k=0

(ST )k(y).

It is well defined because the composition ST = S ◦ T increases the order in x of a
series in Rp, thus

∑∞
k=0(ST )

k(y) converges to a formal series.
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In this setting, one has the following extension of Fuchs’ theorem to the case of
linear differential equations defined over a field of positive characteristic. We give
here a simplified version, for the general statement, see [FH23, Thm. 3.16, Thm. 3.17]

Theorem 2.1 (Fuchs’ Theorem in positive characteristic, [FH23]).

(i) Let L ∈ K[[x]][∂] be a differential operator with shift 0 and local exponent ρ ∈ Fp

at 0. Decompose L = L0 − T into its initial operator L0 ∈ K[x][∂] and tail
operator T ∈ K[x][∂]. Let H be a direct complement of KerL0 in Rp, and let
S = (L0|H)−1 be defined as before. Then

y(x) = v(xρ) =

∞∑
k=0

(ST )k(xρ) ∈ Rp

is a solution of Ly = 0.

(ii) Assume that L has a regular singularity and all local exponents of L are in Fp.
The series yρ,i := v(xρzi

∗
) form a Cp-basis of solutions of Ly = 0 in Rp, where

ρ ranges over all local exponents, mρ denotes the multiplicity of ρ as a local
exponent, and 0 ≤ i ≤ mρ − 1.

By abuse of notation we have written ρ for the local exponent of L in Fp, as well
as for its representative in {0, 1, . . . , p− 1} ⊆ Z.

The nilpotence of the p-curvature of the equation Ly = 0 is equivalent to hav-
ing a basis y1, . . . , yn ∈ Rp which only depends on finitely many of the variables zi
[Hon81; Dwo90].

For j ∈ Fp and γ ∈ F(N)
p we define the section operators ⟨·⟩j,γ : Rp → Rp

extracting those monomials xkzα of an element f ∈ Rp, such that k ≡ j mod p and
αi ≡ γi mod p for all i. More explicitly:〈∑

ck,αx
kzα
〉
j,γ

:=
∑

k∈j+pZ
α∈γ+(pZ)(N)

ck,αx
kzα.

Note that x−jz−γ⟨y⟩j,γ ∈ Cp.

By Theorem 2.1, any regular singular differential equation Ly = 0 admits a
Cp-basis of solutions, and in part (ii) of the theorem the construction of a specific
basis is described in terms of an algorithm. It turns out that the resulting basis can
be described intrinsically by conditions on the exponents of the involved series yρ,i.
This works as follows.

A series y = yρ,i ∈ Rp will be called xeric with respect to Ly = 0 if there is a
local exponent ρ of L and an index 0 ≤ i < mρ such that

⟨yρ,i⟩ρ,i∗ = xρzi
∗

and
⟨yρ,i⟩σ,j∗ = 0
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for all pairs (σ, j) ̸= (ρ, i) of local exponents σ and indices 0 ≤ j < mσ. This signifies
that aside from the initial monomial xρzi

∗
there occurs no p-th power multiple of

some xσzj
∗
in the expansion

∑
ck,αx

kzα of y. This description explains the choice of
the term “xeric” in the sense of “deprived of”. Bases of xeric solutions of differential
equations with regular singularities always exist and are then unique. In fact, it
suffices to apply Theorem 2.1 in the case where the direct complement H of KerL0

is chosen such that the power series expansion of any y ∈ H involves none of the
monomials generating KerL0.

For the case of order 1 differential operators with local exponent ρ = 0 (neces-
sarily of multiplicity 1, hence i = 0 and also i∗ = 0), the xeric solution is the unique
solution y whose expansion involves no p-th power monomial except for the constant
1.

Example 2.2. We consider the series expp, logp(1− x), sinp(x), and cosp(x) in the
characteristic p setting, that is, the xeric solutions of

y′ = y, xy′′ − y′ − x2y′′ = 0, and y′′ = −y,

respectively. Taking p = 3, one obtains

exp3 = 1 + x+ 2x2 + 2x3z1 + (2z1 + 1)x4 + x5z1 + 2x6z21 + (2z21 + 2z1 + 1)x7+

(z21 + 2)x8 + (z31z2 + 2z1)x
9 + (z31z2 + 2z21 + z1 + 2)x10 + . . .

log3(1− x) = x+ 2x2 + x3z1

sin3 = x+ 2z1x
3 + z1x

5 + (2z21 + 2z1)x
7 + z31z2x

9 + (2z31z2 + z1)x
11 + . . .

cos3 = 1 + 2x2 + 2x4z1 + (2z21 + z1)x
6 + (z21 + 2z1 + 2)x8 + . . .

The coefficients ci of Laurent series
∑∞

i=i0
ci(z)x

i in Rp are rational functions in
the variables z1, z2, . . . As such, each of them depends only on finitely many variables
(by definition of polynomials and rational functions in infinitely many variables), but
this number may increase with the exponent k of x and actually go to ∞. We will
be interested in series as above which involve only finitely many z-variables, say, in
the subrings

R(k)
p := Fp(z1, . . . , zk)((x))

of Fp(z)((x)), for k ≥ 0. Restricting to polynomial coefficients in z and setting
zk+1 = zk+2 = . . . = 0 we get projection maps

πk : Fp[z]((x)) → Fp[z1, . . . , zk]((x)),

y(x, z) 7→ y(x, z)|zk+1=zk+2=...=0 = y(x, z1, . . . , zk, 0, . . . , ).

These extend naturally to projection maps

πk : Fp(z)((x)) → Fp(z1, . . . , zk)((x)),

denoted by the same letter πk. In particular, for k = 0 and y ∈ Fp[z]((x)), we get

π0(y(x, z)) = y(x, 0) =
∞∑

i=i0

ci(0)x
i ∈ Fp((x)),
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called the initial series y0. To cover also the case where y ∈ Fp(z)((x)) has rational
function coefficients, we declare ci(0) := ci0 to denote the constant summand in the
Laurent expansion ci(z) =

∑
α∈Z(N) ciαz

α of ci(z). For arbitrary k ≥ 0, we call πk(y)
the k-th projection of y.

Remark 2.3. It turns out that in Fuchs’ Theorem 2.1 one may specify more accurately
the subspace of Fp(z)((x)) in which the solutions live. To this end, introduce, for
every k ≥ 1, the monomials

wk := zp
k−1

1 zp
k−2

2 · · · zpk−1z
1
k.

Thus, w1 = z1, w2 = zp1z2, w3 = zp
2

1 zp2z3, and so on. It was shown in [FH23] that a
basis of solutions of Ly = 0 already exists in xρFp[w1, w2, w3, . . .][[x]]. Further, one
might restrict the space even further, by bounding the degree of the variables wi in
each monomial in terms of the degree of x.

For differential equations of order 1 with local exponent ρ = 0 this corresponds
to the following construction: Define the ring

Sp = Fp{x, xpw1, x
p2w2, . . .}

as the closure of Fp[x, x
pw1, x

p2w2, . . .] in Fp(z)((x)) with respect to the x-adic topol-
ogy. For example, infinite sums of the form

∞∑
k=0

bkx
pkwk =

∞∑
k=0

bkx
pkzp

k−1

1 zp
k−2

2 · · · zpk−1z
1
k

belong to Sp, for any bk ∈ Fp, since the sum converges to an element of Fp(z)((x))
and this will be illustrated again in the later sections. As before, we may restrict to
finitely many z-variables, and then set

S(k)
p = Fp{x, xpw1, x

p2w2, . . . , x
pkwk} = Sp ∩R(k)

p .

In the following paragraphs, we want to make Question 1.1 more precise. Recall
that the solutions of Ly = 0 form an n-dimensional Cp-vector space. In particular, if
y is a solution, such that its initial series is algebraic, multiplying y by a transcendent
power series in xp gives another solution of Ly = 0, whose initial series cannot be
algebraic. However, it turns out that if a given differential equation Ly = 0 has a
basis of power series solutions with algebraic projections, the same holds true for its
xeric basis.

Proposition 2.4. Let L ∈ Fp[[x]][∂] be a differential operator of order n and assume
there is a basis ỹ1, . . . , ỹn ∈ Fp[z1, z2, . . .][[x]] of solutions of Ly = 0 with algebraic
projections for all k ∈ N, i.e., πk(ỹi) is algebraic over Fp(x, z1, . . . , zk) for all k.
Then, the xeric basis y1, . . . , yn has algebraic projections as well.

For the proof we need the following lemma, generalizing a well known fact about
sections of algebraic power series in characteristic p:
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Lemma 2.5. Let f ∈ Fp(z1, z2, . . . , zk)((x)). Then f is algebraic over Fp(x, z1, z2,
. . . , zk) if and only if ⟨f⟩j,α is algebraic for all j ∈ Fp, α ∈ Fk

p.

Proof. Since f is a sum over all its sections, the condition is obviously sufficient.

To see that it is necessary, we use backwards induction over

e(j, α) := j + α1p+ α2p
2 + . . . ,

where · : Z → {0, 1, . . . , p − 1} denotes the reduction modulo p. Note that since y
only contains monomials in the variables x, z1, . . . , zk, we have e(j, α) ≤ pk+1 − 1
for each monomial xjzα in y. The quantity e(j, α) is the unique integer, such that
(xjzα)(e(j,α)) = 0, but (xjzα)(e(j,α)−1) ̸= 0. Moreover, ⟨f⟩−1,(−1,...,−1) is the sum of

monomials xjzα in f with e(j, α) = pk+1 − 1. We obtain,

f (pk+1−1) = a(e(p− 1, . . . , p− 1))x−(pk+1−1)z
−(pk−1)
1 . . . z

−(p−1)
k ⟨f⟩−1,(−1,...,−1),

where a(e(p − 1, . . . , p − 1)) is a non-zero constant. This equality essentially fol-
lows from the repeated application of the product rule, always choosing to take the
derivative with respect to x, except if the exponent of x is divisible by p, compare
to [FH23, Lem. 3.4].

Using the fact that the any derivative of an algebraic series is algebraic, we get
algebraicity of ⟨f⟩−1,(−1,...,−1). To get algebraicity of other sections, consider now

f̃ = f − ⟨f⟩−1,(−1,...,−1). Then any monomial xjzα in f̃ satisfies e(j, α) ≤ pk+1 − 2
and we get analogously

f̃ (pk+1−2) = a(e(p− 2, . . . , p− 1))x−(pk+1−2)z
−(pk−1)
1 . . . z

−(p−1)
k ⟨f̃⟩−2,(−1,...,−1).

Algebraicity of the section ⟨f̃⟩−2,(−1,...,−1) = ⟨f⟩−2,(−1,...,−1) follows as above. Re-
peating this construction of removing sections we already know to be algebraic, we
prove algebraicity of all sections.

Proof of Proposition 2.4. Assume that the local exponents of L are ρ1, ρ2, . . . , ρℓ ∈
Fp of multiplicities m1, . . . ,mℓ respectively. Again, by abuse of notation, we write ρ
for both the local exponent of L in Fp and its representative in {0, 1, . . . , p−1} ⊆ Z.
Without loss of generality assume that ρ1 < ρ2 < . . . < ρℓ in Z. Let Y =
(y1, . . . , yn)

⊤ and Ỹ = (ỹ1, . . . , ỹn)
⊤. Then there isD ∈ GLn(Cp), such thatDỸ = Y .

Truncating at a suitable order of x, there is a matrix of rational functions D̂ ∈
GLn(Fp(x

p, zp1 , . . .)), such that D̂Ỹ = Ŷ , with

Ŷ = (xρ1 , . . . , xρ1z(mρ1−1)∗ , . . . , xρℓ , . . . , xρℓz(mρℓ
−1)∗)⊤ + . . .

where all other terms of each row have higher order in x. In other words we choose
an approximation of D of high enough degree, such that the terms of least order
in x of DỸ agree with the terms of least order in x of Y . Then there is m, such
that D̂ ∈ GLn(Fp(x

p, zp1 , . . . , z
p
m)), as all its entries are rational functions and thus
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depend only on finitely many variables zi.

Now, Ŷ is again a basis of solutions so we get C ∈ GLn(Cp) such that Ŷ = CY.
By definition of the xeric solutions, we have

⟨Y ⟩ρs,j∗ = xρszj
∗
em1+...+ms+j

for 1 ≤ s ≤ k, j < ms, where ei denotes the i-th unit vector. As C ∈ Cp =
Fp(z

p
1 , z

p
2 , . . .)((x

p)),

⟨Ŷ ⟩ρs,j∗ = ⟨CY ⟩ρs,j∗ = Cxρszj
∗
em1+...+ms+j = xρszj

∗
Cm1+...+ms+j ,

where Ci denotes the i-the column of C. But then

Cm1+...+ms+j = x−ρsz−j∗⟨Ŷ ⟩ρs,j∗ ∈ (Fp(z1, . . . , zm)[zm+1, . . .][[x]])
n,

since, by construction the terms, in ⟨Ŷ ⟩ρs,j∗ of lowest order in x are either 0, xρszj
∗

or have order higher than p in x.
Moreover, comparing orders in x in the equation Ŷ = CY, and using Cp-linear

independence of the terms of least order in x of Y , we obtain the following: The
matrix C has entries in 1 + x(Fp(z1, . . . , zm)[zm+1, . . .][[x]]) on the main diagonal,
the entries below the diagonal have order in x strictly greater than 0 and the entry
above the main diagonal have non-negative order. Consequently,

detC ∈ 1 + x(Fp(z1, . . . , zm)[zm+1, . . .][[x]]) ⊆ (Fp(z1, . . . , zm)[zm+1, . . .][[x]])
×

and C ∈ GLn(Fp(z1, . . . , zm)[zm+1, . . .][[x]]).

Recall that D̂Ỹ = Ŷ with D̂ ∈ GLn(Fp(x
p, zp1 , . . . , z

p
m)). So we have

πi
(
Ŷ
)
= D̂πi

(
Ỹ
)

for i ≥ m+ 1 and therefore each entry of πi
(
Ŷ
)
is algebraic, as each entry of πi

(
Ỹ
)

is by assumption and the entries of D̂ are rational functions. Moreover, Y = C−1Ŷ
and using that C−1 ∈ GLn(Fp(z1, . . . , zm)[zm+1, . . .][[x]]), we obtain

πi(Y ) = πi
(
C−1

)
πi
(
Ŷ
)
.

Recall that Cm1+...+ms+j = x−ρsz−j∗⟨Ŷ ⟩ρs,j∗ . Consequently, the entries of πi(C) are

monomial multiples of sections of πi
(
Ŷ
)
, which are algebraic by Lemma 2.5. With

πi
(
C−1

)
= πi(C)−1 we can conclude that πi(Y ) is algebraic for i ≥ m+1. Finally, for

i ≤ m, we can apply πi to the minimal polynomial of πm+1(Y ) ∈ Fp[z1, . . . , zm][[x]]
and therefore πi(Y ) is algebraic as well for these values of i.

Thus, we have essentially reduced Problem 1.1 to the following:

Problem 2.6. For which differential operators L ∈ Fp[x][∂] has the basis of xeric
solutions with algebraic projections?

We conclude this section with an assertion about the algebraicity of projections:
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Lemma 2.7. Let f ∈ Fp[z1, z2, . . . , zk][[x]] be algebraic over Fp(x, z1, z2, . . . , zk).
Write f =

∑
fαz

α for fα ∈ Fp[[x]]. Then fα is algebraic over Fp(x) for all α.

Proof. We use induction on the number of variables k. The case k = 0 is trivial, so
assume we have proven the statement for k−1. Take f ∈ Fp[z1, . . . , zk][[x]] algebraic
over Fp(x, z) with minimal polynomial P. Chose α = (α′, αn) ∈ Nk with α′ ∈ Nk−1.
Setting zk = 0 in the identity P (f) = 0 shows that f |zk=0 ∈ Fp[z1, . . . , zk−1][[x]]
is algebraic over Fp(x, z). Then the induction hypothesis applies so we know that
(f |zk=0)α′ = f(α′,0) is algebraic over Fp(x, z). We can apply this argument to the
algebraic element (f − f |zk=0)/zk to get algebraicity of f(α′,1) and repeat to show
the algebraicity of fα = f(α′,αn).

3 The Exponential Differential Equation

In [FH23] the exponential function expp in characteristic p was defined as the xeric
solution of y′ = y. All further solutions of y′ = y inRp are then given by Cp-multiples
of expp. In this section we are going to define a different element ẽxpp ∈ Rp as an
infinite product and show that it is another solution of y′ = y.

Let us start with an observation. Recall that we introduced wk as short-hand

notation for wk := zp
k−1

1 zp
k−2

2 · · · zpk−1z
1
k. Then clearly

w′
k =

1

x
zp

k−1−1
1 zp

k−2−1
2 · · · zp−1

k−1 =
wk

xz1z2 · · · zk
=

1

x
wp−1
1 wp−1

2 · · ·wp−1
k−1.

Higher derivatives of wk are in general sums of monomials without any obvious
pattern. However, we have the following:

Proposition 3.1. We have

(xp
k
wk)

(pk−pk−1+1) = −
(
xp

k−1
wk−1

)′
.

This proposition will be a consequence of Theorem 3.4 and Proposition 3.7. One
can also give a proof by direct computations.

This property allows for the definition of a solution of y′ = y in the following
way: A series y =

∑∞
i=0 ai(z)x

i ∈ Rp with ai ∈ Fp((z1, z2, . . .)) is a solution of y′ = y
if and only if

(i) a′0 = 0, i.e., a0 ∈ Fp(z
p
1 , z

p
2 , . . .), and

(ii) (ai(z)x
i)′ = ai−1(z)x

i−1.

So we set apk−1(z) := (−1)kw′
k for all k and then define apk−m(z) via the equations

xp
k−mapk−m(z) = (−1)k(xp

k
wk)

(m) for all m ≥ 1. Proposition 3.1 shows that this is
well-defined. This gives rise to a solution of y′ = y.

This solution will be the solution ẽxpp of y′ = y which we will define by different
means in the next paragraph. This other definition is less intuitive, but will prove
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to be more convenient for our calculations. Proposition 3.7 then shows that the two
solutions agree.

We define the continuous K-automorphism

σ : Fp[[t]] → Fp[[t]], t 7→
∞∑
k=0

tp
k
,

and set recursively
g0 := σ(x) and gi+1 := σ(gpi zi+1).

Further we define

H(t) :=

p−1∏
k=1

(
1− t

k

)k

for t a variable and ẽxpp :=
∞∏
i=0

H
(
(−1)igi

)
.

Note that ẽxpp is well-defined, as gi ∈ xp
iFp[z1, z2, . . .][[x]]. Clearly ẽxpp|x=0 = 1. We

now show that it is indeed a solution to y′ = y. The main ingredient is the following
Lemma about the logarithmic derivative of H:

Lemma 3.2. For s ∈ Rp we have

H(s)′

H(s)
=

s′

1− sp−1
.

In particular,

H(σ(s))′

H(σ(s))
=

s′σ(s)

s
and

H((−1)igi)
′

H((−1)igi)
=

(−1)igi
xz1 · · · zi

.

Proof. By the additivity of the logarithmic derivative

(fg)′

fg
=

f ′

f
+

g′

g
,

we have

H(s)′

H(s)
= −

p−1∑
k=1

s′

1− 1
ks

. (2)

Set

F (t) =

p−1∏
k=1

(
t+ 1− s

k

)
=
∑

ci(s)t
i.

Using Fermat’s Little Theorem we see that F (t) = (t+1)p−1−sp−1 as their zero sets
agree and in particular, we have c0(s) = 1 − sp and c1(s) = −1. Thus, we further
obtain, bringing (2) to a common denominator,

H(s)′

H(s)
= −s′

c1(s)

c0(s)
= −s′

−1

1− sp−1
=

s′

1− sp−1
.

11



So for H(σ(s)) we obtain

H(σ(s))′

H(σ(s))
=

σ(s)′

1− σ(s)p−1
=

s′σ(s)

σ(s)− σ(s)p
=

s′σ(s)

s
.

In this identity, setting s = (−1)igpi−1zi, i.e., σ(s) = (−1)igi, we obtain

s′

s
=

z′i
zi

=
1

xz1 · · · zi

and
H((−1)igi)

′

H((−1)igi)
=

(−1)igi
xz1 · · · zi

.

Remark 3.3. The identity
H(s)′

H(s)
=

s′

1− sp−1

can also be derived from

H(s)′

H(s)
= −

p−1∑
k=1

s′

1− 1
ks

= −s′ ·
∞∑
i=0

si
p−1∑
k=1

1

ki

using the well-known fact

p−1∑
k=1

ki ≡

{
−1 if i ≡ 0 mod p− 1

0 else
mod p.

The formula for the sum of the first k of the i-th powers in terms of Bernoulli numbers
is called Faulhaber’s formula, who computed the sums for the first 17 values of i in
[Fau31] in the early 17-th century. The above-mentioned fact is an easy corollary.

Theorem 3.4. We have ẽxp′p = ẽxpp.

Proof. By the additivity of the logarithmic derivative and Lemma 3.2 we have

ẽxp′p
ẽxpp

=
∞∑
i=0

(−1)igi
xz1 · · · zi

.

We will show inductively that

k∑
i=0

(−1)igi
xz1 · · · zi

= 1 +
(−1)kgpk
xz1 · · · zk

.

Then, as gk ∈ xp
kFp(z1, z2, . . .)[[x]], it follows that

ẽxp′p
ẽxpp

− 1 = lim
k→∞

(−1)kgpk
xz1 · · · zk

∈
∞⋂
k=0

xp
k−1Fp(z1, z2, . . .)[[x]] = 0

12



and we are done.

The induction is straightforward: For k = 0 using that gp0 = g0 − x the claim
follows immediately. Moreover,

1 +
(−1)kgpk
xz1 · · · zk

+
(−1)k+1gk+1

xz1 · · · zk+1
= 1 +

(−1)k+1gpk+1

xz1 · · · zk+1

as gpkzk+1 = gk+1 − gpk+1.

Remark 3.5. This definition of ẽxpp can, in light of this proof, be motivated as fol-
lows: We want to find an element ofRp whose logarithmic derivative is 1. Lemma 3.2
shows that H(σ(x)) is a good approximation for such an element; its logarithmic
derivative is 1 + xp−1 + xp

2−1 + . . . ∈ 1
xFp[[x

p]]. By the additivity of the logarithmic
derivative, we search for a factor, eliminating the error made, i.e., an element of
Rp whose logarithmic derivative is −(xp−1 + xp

2−1 + . . .). For this, choose s = −g1,
the primitive of this error series. Then H(s) gives by Lemma 3.2 again a good ap-
proximation. Iterating this process we obtain exactly the infinite product defining
ẽxpp.

Corollary 3.6. For each k ∈ N the series πk
(
ẽxpp

)
is algebraic over Fp(x, z1, . . . , zk).

Further, for each α ∈ N(N) the series ẽxpp ∈ Fp((x, z1, . . .)) has an algebraic Laurent
series coefficient of zα in F((x)). The same holds true for expp and any algebraic
multiple of it.

Proof. The series gk ∈ Fp[z1, . . . , zk][[x]] are algebraic. Indeed, gk satisfies gpk −
gk = gpk−1zk and by induction and the transitivity of algebraicity, the claim follows.
Moreover, gk ∈ zkFp[z1, . . . , zk][[x]], so one sees that

k∏
i=0

H((−1)igi) = πk
(
ẽxpp

)
,

where the left-hand side is algebraic. Hence all the partial products are algebraic
and approximate ẽxpp. The rest follows from Proposition 2.4 and Lemma 2.7.

Write ẽxpp = ẽ0 + ẽ1x + ẽ2x
2 + . . . with ẽi ∈ Fp(z1, z2, . . .). The coefficients ẽi

of the function ẽxpp have the following remarkable property, which we hinted at the
beginning of this section and which already uniquely determines the function ẽxpp
as a solution of y′ = y.

Proposition 3.7. For all n ∈ N we have ẽpn−1 = (−1)nxw′
n.

For the proof we need the following lemma describing certain coefficients of the
polynomial H(s):

Lemma 3.8. Write H(s) =
∑p−1

i=0 ai(s
p)si. Then ap−1 = −1.

Proof. By Lemma 3.2 we have

H(s) = (1− sp−1)H ′(s).
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Comparing coefficients of powers of s which are congruent to each other modulo p
at once, one obtaines the following recursion for the series ai:

ai = (i+ 1)ai+1 − (i+ 2)ai+2z
p for i = 0, . . . , p− 2 and ap−1 = −a1.

From this we obtain that ap−2 = −ap−1 and inductively, that ai is divisible by ap−1

for all i. It follows that H(s) is divisible by ap−1. Since H(s) does not have a p-fold
root, but ap−1 ∈ Fp[s

p], it follows that ap−1 ∈ Fp and ap−1 = ap−1(0) = −a1(0) =
−H ′(0) = −1.

Proof of Proposition 3.7. Denote hi := H((−1)igi) and write [xk]f for the coefficient
of xk in the Laurent series expansion of f . We show by induction

ẽpn−1 = (−1)m
m−1∏
i=0

wp−1
i · [xpn−pm ]

( ∞∏
i=m

hi

)

for m = 0, . . . , n. For m = 0 this is the definition of ẽpn−1. For the induction step
we need to verify that for all m we have

[xp
n−pm−1

]

( ∞∏
i=m−1

hi

)
= −wp−1

m−1[x
pn−pm ]

( ∞∏
i=m

hi

)
.

Note that gi ∈ Fp[z1, z2, . . .][[x
pi ]] and gi − wix

pi ∈ Fp[z1, z2, . . .][[x
pi+1

]]. We see∏∞
i=m hi ∈ Fp[z1, z2, . . .][[x

pm ]] and

[xp
n−pm−1

]

( ∞∏
i=m−1

hi

)
=
∑
k

[xkp
m−pm−1

](hm−1) · [xp
n−kpm ]

( ∞∏
i=m

hi

)
. (3)

Now one easily checks by induction that

hm−1 −H((−1)m−1wm−1x
pm−1

) ∈ Fp[z1, z2, . . .][[x
pm ]]

and we obtain

[xkp
m−pm−1

](hm−1) = [xkp
m−pm−1

](H
(
(−1)m−1wm−1x

pm−1
)
)
,

as the exponents considered are not multiples of pm. Setting s = (−1)m−1wm−1x
pm−1

in Lemma 3.8 we can further compute

[xkp
m−pm−1

](H
(
(−1)m−1wm−1x

pm−1
)
)
=

{
−((−1)m−1wm−1)

p−1 if k = 1

0 otherwise,

which shows that the sum on the right-hand side of (3) only has one non-trivial
summand, namely for k = 1. This finishes the induction step. Now setting m = n
we obtain

ẽpn−1 = (−1)n
n−1∏
i=0

wp−1
i = (−1)nxw′

n.
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4 The pk-curvatures

Consider the equation
y′ + ay = 0.

for a ∈ Fp[z1, z2, . . . , zk]((x)). Write L = ∂ + a for the corresponding differential
operator and assume that its initial form L0 is an element of Fp[x][∂], i.e., a = ρ

x + ã,
where ρ ∈ Fp and ã ∈ Fp[z1, . . . , zk][[x]]. Without loss of generality we may assume
that its local exponent is given by ρ = 0. Indeed, replacing y by x−ρy the differential
equation changes to

y′ +
(
a− ρ

x

)
y = 0,

whose local exponent is 0.

Recall that the elements ẽi ∈ Fp[z1, z2, . . .] were defined as the coefficients of the
solution ẽxpp = ẽ0 + ẽ1x+ ẽ2x

2 + . . . of the exponential differential equation y′ = y
in Section 3. In particular, this means that (ẽix

i)′ = ẽi−1x
i−1.

Lemma 4.1. The series

y0 :=

∞∑
i=0

(−1)iẽix
iLi(1) (4)

is an element of Rp and a solution of Ly = 0.

Proof. The first assertion is trivial, as ordxẽix
iLi(1) ≥ i and thus the sum is well-

defined.

For the second part we compute using the product rule

Ly0 =
∞∑
i=1

(−1)iẽi−1x
i−1Li(1) +

∞∑
i=0

(−1)iẽix
iLi+1(1) = 0.

Remark 4.2. This Lemma gives another verification of the fact that any differential
equation of order one has a solution in Rp. Moreover, it extends to systems of higher
dimensions, generalizing a proof of Cartier’s Lemma (cf. Proposition 4.5) given by
Chambert-Loir [Cha02, p.184]:

Let Y ′ = AY be a system of first order differential equations. Define the matrices
Ak via Ak+1 = A′

k + Ak · A. Then for any solution Y of the system, we have
Y (n) = AnY and the same computation as in the proof above shows that

Y =

∞∑
i=0

(−1)iẽiAi

is a fundamental matrix of solutions of Y ′ = AY .
Thereby we obtain – modulo the equivalence of systems of differential equations

of order 1 and scalar equations of higher order – another verification of the existence
of a full basis of solutions of any regular singular differential equation in Rp.
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In analogy to the p-curvature we define the pk-curvature as the operator

Lpk : Rp → Rp.

Lemma 4.3. The pk-curvature of L = ∂+ a is an R(k−1)
p = Fp(z1, z2, . . . zk−1)((x))-

linear map. Consequently, on R(k−1)
p it is given by the value of 1: Lpk(1) =: apk .

Proof. By induction one easily shows for any f, g ∈ Fp(z1, z2, . . . zk−1)((x)) the equa-
tion

Lm(fg) =

∞∑
j=0

(
m

j

)
Lj(f)∂m−jg

holds true. In particular, for m = pk only two of the binomial coefficients do not
vanish modulo p and we obtain

Lpk(fg) = gLpk(f) + f∂pkg = gLpk(f),

as ∂pk (Fp(z1, z2, . . . zk−1)((x))) = 0.

We will therefore by abuse of notation also call apk the pk-curvature of L =
∂ + a(x).

Proposition 4.4. The pk-curvatures apk have the alternate characterization:

apk =
k∑

i=0

(
a(p

i−1)
)pk−i

=
(
apk−1

)p
+ a(p

k−1).

Proof. Write am for (∂ + a)m(1). First note that am can be written as

am =
∑

α∈Am

λα

m−1∏
j=0

(
a(j)
)αj

, (5)

where

Am :=

α = (α0, . . . αm−1) ∈ Nm :
m−1∑
j=0

αj(j + 1) = m

 .

Indeed, (∂+a)(1) = a and inductively, for each summand in (5) both, multiplication
by a, and differentiation, give a monomial with exponents in Am+1.

Next, we show that each of the coefficients λα for α ∈ Am in the expansion (5)
of am is given by:

λα =
m!∏m−1

j=0 αj !((j + 1)!)αj

=

(
m

α0, 2α1, . . . ,mαm−1

)m−1∏
j=0

(
αj(j + 1)

j + 1, . . . , j + 1

)
1

αj !
. (6)
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Note that the right-hand side of this equation is an integer and can be reduced
properly modulo any prime p. Again, we proceed by induction. For m = 0, A0 =
{()} and λ0 = 1. Denote by εk for 0 ≤ k ≤ m the element (0, . . . , 0, 1, 0, . . . , 0) ∈
Nm+1, where the entry 1 is in the k + 1-st position. We embed Nm in Nm+1 by
Nm ∼= Nm × {0} ⊆ Nm+1. Then for α ∈ Am+1 we get

λα = λα−ε0 +
m−1∑
j=0

(αj + 1)λα+εj−εj+1

=
(m+ 1)!∏m

j=0 αj !((j + 1)!)αj

α0 · 1!
m+ 1

+
m∑
j=0

(j + 2)αj+1

m+ 1

 =
(m+ 1)!∏m

j=0 αj !((j + 1)!)αj

using the induction hypothesis for α+ εj − εj+1 ∈ Am.

Now we show that for m = pk only a small portion of the coefficients λα are
non-zero, namely only if α = pk−ℓεpℓ−1 for ℓ = 0, 1, . . . , k. In these cases λα = 1.

By Lucas’ Theorem applied to the left multinomial coefficient in (6), it follows
that λα = 0 except pk = m = αj0(j0 + 1) for some j0. Consequently j0 = pℓ − 1
and αj0 = pk−ℓ for some ℓ. This means α = pk−ℓεpℓ−1. We compute, splitting the
multinomial coefficient into a product of binomial coefficients, accounting for one
factor of pk−ℓ! in each of these binomials and using Lucas’ Theorem:

λα = 1 · 1

pk−ℓ!

(
pk

pℓ, . . . , pℓ

)
=

pk−ℓ∏
j=0

(
jpℓ − 1

pℓ − 1

)
=

pk−ℓ∏
j=0

(
j − 1

0

)
= 1.

This finishes the proof.

This is a generalization of the formula ap = ap+a(p−1) for the p-curvature for first
order equations [BCR23, Thm. 3.12]. It has no obvious extension to higher dimen-
sional differential equations, or, equivalently, larger systems of first order differential
equations.

If a ∈ Fp((x)), then apk = ap
k−1

p , i.e., the evaluation of Lpk at 1 is just the

pk−1-st power of the evaluation of Lp at 0. Therefore it vanishes, if and only if
the p-curvature does so. However, if a ∈ Fp(z1, . . . zk)((x)) the pj-curvatures for

j = 1, . . . k + 1 are not just powers of each other, but apj = aj−k
pk+1 for j > k. If a is

any element in Rp, there need not be any such relation between the pj-curvatures.
The following proposition shows that the pk-curvatures generalize the p-curvature.

Recall that we write R(k)
p ⊆ Rp for Fp(z1, . . . , zk)((x)). It generalizes Cartier’s

Lemma relating the vanishing of the p-curavture to the existence of solutions for
differential equations in positive characteristic p, first appearing in [Kat72] and be-
ing reproduced in [BCR23, Thm. 3.18].

Proposition 4.5 (Extension of Cartier’s Lemma). Let L = ∂ + a be a differential
operator with regular singularity at 0 and local exponent ρ = 0.

(a) If a ∈ Fp(x, z1, . . . , zk) ⊆ R(k)
p is a rational function, then the following are

equivalent:
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(i) The differential equation Ly = 0 has a non-zero solution in Fp(z1, . . . , zk, x).

(ii) The pk+1-curvature of L vanishes, i.e., apk+1 = 0.

(iii) The operator ∂pk+1
is divisible by L in Fp(z1, . . . , zk, x)[∂].

(b) If a ∈ R(k)
p is algebraic over Fp(x, z1, . . . , zk), then the following are equivalent:

(i) The differential equation Ly = 0 has a non-zero algebraic solution in R(k)
p .

(ii) The pk+1-curvature of L vanishes, i.e., apk+1 = 0.

(iii) The operator ∂pk+1
is divisible by L in R(k)

p,alg[∂], where R(k)
p,alg denotes the

algebraic elements of R(k)
p .

(c) If a ∈ R(k)
p is arbitrary, then the following are equivalent:

(i) The differential equation Ly = 0 has a non-zero solution in R(k)
p .

(ii) The pk+1-curvature of L vanishes, i.e., apk+1 = 0.

(iii) The operator ∂pk+1
is divisible by L in R(k)

p [∂].

Proof. The proof for all three assertions works analogously, we state the proof for
(a) here.

Assume (i) holds, i.e., there is a solution y ∈ Fp(x, z1, . . . , zk) of Ly = 0. Then

apk+1 = Lpk+1
(1) = y−1Lpk+1

(y) = 0,

which shows (ii). For the converse implication consider the solution y of Ly = 0

given in Lemma 4.1, Equation (4). As Lpk+1
(1) = 0 this is a finite sum of rational

functions in the variables x, z1, . . . , zk, which proves (i).

For the equivalence of (i) and (iii) we use that Fp(x, z1, . . . , zk)[∂] is a (left- and
right-) Euclidean ring. In fact, the skew-polynomial ring over any (skew-) field is

Euclidean, as observed by Ore [Ore33]. Thus we may write ∂pk+1
= QL + R for

some differential operator R,Q, where ordR < ordL = 1. If y ∈ Fp(x, z1, . . . , zk) is

a solution of Ly = 0, then Ry = ∂pk+1
y−QLy = 0 and consequently the solution of

Ly = 0 is also a solution of Ry = 0. Because R is of order 0, this means R = 0 and
thus (iii) follows.

Conversely, assume that ∂pk+1
= QL. The kernel of ∂pk+1

is Fp(x, z1, . . . , zk)
and thus a pk+1-dimensional Fp(x

p, zp1 , . . . , z
p
k)-vector space. The Fp(x

p, zp1 , . . . , z
p
k)-

dimensions of the kernels of Q respectively L in Fp(x, z1, . . . , zk) are at most pk+1−1
respectively 1, thus equality must hold. In particular the kernel of L is not empty,
i.e., (i) holds.
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5 Product Formulas and Algebraicity for Solutions of
Equations of Order 1

The goal of this section is to generalize the product formula for expp developed in
Section 3 to solutions of arbitrary first order differential equations.

Recall that we defined wk := zp
k−1

1 zp
k−2

2 · · · z1k and Sp as the completion of

Fp[x, x
pw1, x

p2w2, x
p3w3 . . .] in Rp, as well as S(k)

p := Sp ∩ R(k)
p . Further recall

the projection maps πk : Rp → R(k)
p , taking the constant term of an element with

respect to zk+1, zk+2, . . ..

Theorem 5.1. Let L = ∂ + a be a first order linear differential operator with
rational function coefficient a ∈ Fp(x) (or algebraic coefficient a ∈ Fp((x))), regular
singularity at 0 and local exponent ρ = 0. Then, for every k ∈ N there exists a

series hk ∈ 1 + xp
k
wkS

(k)
p , which is algebraic over Fp(x, z1, z2, . . . , zk), such that

h :=
∏∞

k=0 hk satisfies Lh = 0. In particular, πi(h) =
∏i

j=0 hj is algebraic over
Fp(x, z1, . . . , zi) for all i.

With Proposition 2.4 and Lemma 2.7, this has the following immediate conse-
quences:

Corollary 5.2. Let L = ∂+a be a first order differential operator with local exponent
ρ ∈ Fp. Then its xeric solution has algebraic projections.

Corollary 5.3. Let y be the solution h of Ly = 0 defined in Theorem 5.1 or the
xeric solution of this equation. Then for any α ∈ N(N) the coefficient yα ∈ Fp((x)) of
zα in y is algebraic over Fp(x). In particular, the initial series y|z1=z2=···=0 of y is
algebraic.

For the proof of Theorem 5.1 we need the following lemma:

Lemma 5.4. Let L = ∂ + a be a differential operator with a ∈ S(i)
p . There is an

algebraic element v ∈ S(i)
p , such that the pi+1-curvature of the modified operator

L≤i := L− vp(xp
i+1

wi+1)
′ = ∂ + a− vp(xp

i+1
wi+1)

′

vanishes.

Proof. We write a = c(wi+1x
pi+1

)′ + r in the C ∩ R(i)
p -vector space R(i)

p for some

c ∈ C ∩ R(i)
p and some r in the direct complement of (wi+1x

pi+1
)′. Then one checks

that (r)(p
i+1−1) = 0, cf. [FH23, Lem. 3.4]. By Proposition 4.4 the pi+1-curvature of

L≤i is given by

Lpi+1

≤i (1) = (Lpi

≤i(1))
p + (a− vp(xp

i+1
wi+1)

′)(p
i+1−1)

= (Lpi

≤i(1))
p + (a)(p

i+1−1) − vp(xp
i+1

wi+1)
(pi+1)

= (Lpi

≤i(1))
p + (−1)i+1ãp − vp(xp

i+1
wi+1)

(pi+1)

= (Lpi

≤i(1))
p + (−1)i+1(ã− v)p,
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where we have used that (xp
j
wj)

(pj) = (−1)j for all j.

The vanishing of the p-curvature of Lk is thus equivalent to

(−1)i+1Lpi

≤i(1) + ã = v

The left hand side of this equation can be expanded as a polynomial in vp with

algebraic coefficients in S(i)
p . Thus we can invoke the implicit function theorem to

find an algebraic solution v.

Proof of Theorem 5.1. For i ∈ N we will construct a sequence of operators L≤i,
modifications of L, such that their pi+1-curvature vanishes, converging to L in the

x-adic topology. Further we will construct algebraic hi ∈ S(i)
p with πi−1(hi) = 1 in

such a way that bi :=
∏i

j=0 hj satisfies L≤i(bi) = 0. Then, we will show that the
sequence bi converges to a solution h of Ly = 0.

We set Vi := vpi (x
pi+1

wi+1)
′ and

L≤i := L− Vi,

where vi ∈ S(i)
p is algebraic and chosen in accordance with Lemma 5.4 and such that

the pi+1-curvature of L≤i vanishes. Denote by ti the solution of L≤iy = 0, obtained
from Lemma 4.1, i.e.,

ti :=

pi+1−1∑
j=0

(−1)j ẽjL
j
≤i(1)x

j .

Note that the sum is finite, because Lpi+1

≤i (1) = 0 and ti is algebraic over Fp(x, z1, . . . , zi),
as L≤i has algebraic coefficients.

Denote by L>i the differential operator ∂+Vi. Rewriting with shift 0, we obtain
x∂ + xVi = S>i + T>i in the language of Fuchs’ Theorem in positive characteristic,
Theorem 2.1. By construction the composition S>0T>0 maps Sp to wi+1Sp. So the
equation L>iy = 0 has a solution qi ∈ Sp with πi(qi) = 1. We show that if f1 ̸= 0 is
a solution of L≤iy = 0, then L(f1f2) = 0 if and only if L>i(f2) = 0. Indeed,

L(f1f2) = (∂ + a(x)− Vi + Vi)(f1f2)

= f2∂f1 + (a(x)− Vi) · f1f2 + f1∂f2 + Vi · f1f2
= f2 · L≤i(f1) + f1 · L>i(f2) = f1 · L>i(f2)

Set h0 := t0. Then L≤0(b0) = L≤0(h0) = 0 by definition. Now assume that we
have constructed h0, . . . , hi already.

We set
ui+1 := t−1

i+1q
−1
i+1biqi.

Then, ui+1 ∈ Cp, as according to the observation from above, both ti+1qi+1 and biqi
are solutions of the first order equation Ly = 0. Note that πi(ui+1) = πi(ti+1)

−1bi
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is algebraic, as both factors are.

Further, we define

hi+1 := πi(ui+1)ti+1b
−1
i ∈ S(i+1)

p ,

which is algebraic, since all the factors are. Moreover,

L≤i+1(bi+1) = L≤i+1(πi
(
ui+1

)
ti+1) = πi

(
ui+1

)
L≤i+1(ti+1) = 0,

since we already established ui+1 ∈ Cp and

πi
(
hi+1

)
= πi

(
ui+1ti+1b

−1
i

)
= πi

(
qi
)
πi
(
qi+1

)−1
= 1.

Thus, hi+1 has the required properties.

Finally, we have to show that bi converges to a solution of Ly = 0 as i → ∞.
First, note that h :=

∏∞
i=0 hi is well-defined, as ordx(hi − 1) ≥ pi+1. We prove that

[xn]Lh = 0 for all n ∈ N. Let n be fixed and choose m with n + 1 < pm+1. Then
ordx(h− bm) ≥ pm+1 > n+ 1 and consequently

ordx(L(h− bm)) > n.

Clearly ordx(Vmbm) > n and therefore

[xn]Lh = [xn]Lbm = [xn]L≤mbm + [xn]Vmbm = 0.

Remark 5.5. We can replace a by an algebraic element of S(k)
p in the theorem above.

For the proof one sets
hi := πi−1

(
tk
)−1

πi
(
tk
)

for 1 ≤ i ≤ k and h0 = π0(tk). Since tk is algebraic so are h0, . . . , hk and

πi−1

(
hi
)
= πi−1

(
πi−1

(
tk
)−1

πi
(
tk
))

= 1.

For hi with i > k one proceeds as in the proof of the theorem.

Example 5.6. In the case of the exponential differential equation y′ = y we have
a = −1. In this case the equation for v0 reads according to Lemma 5.4

−1− vp0x
p−1 + v0 = 0,

which has the solution v0 = x−1σ(x), where σ(x) =
∑∞

k=0 x
pk . The differential

equation L≤0 then reads xy′ = σ(x)y, or equivalently:

y′

y
=

σ(x)

x
.

By Lemma 3.2 we have
(H(σ(x)))′

H(σ(x))
=

σ(x)

x
,
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which shows that shows that

H(σ(x)) =

p−1∏
k=1

(
1− 1

k
σ(x)

)k

=: h0

solves the equation L≤0y = 0. So we recover the beginning of the infinite product
defining ẽxpp.

6 Trigonometric functions

Having investigated the exponential function in positive characteristic one cannot
resist to look also at the sine and cosine function, i.e., at the solutions of the second
order differential equation

y′′ + y = 0.

The local exponents at 0 are 0 and 1. The equation has a 2-dimensional solution
space over the field of constants Cp = Fp(z

p
1 , z

p
2 , . . .)((x

p)). Here are, for p = 3, the
two xeric solutions, which we call sinp and cosp:

sin3(x) = x+ z1x
3 + z1x

5 + (z21 + z1)x
7 + z31z2x

9 + (z31z2 + 2z1)x
11 + . . .

cos3(x) = 1 + x2 + 2z1x
4 + (z21 + 2z1)x

6 + (z21 + 2z1 + 2)x8 + (2z31z2 + z1)x
10 + . . .

In this situation, it is tempting to expect again an algebraic relation of the form
sin2p+cos2p = 1 as in the characteristic zero case. This can easily be disproved, and it
is also not clear a priori how sinp and cosp relate to expp. To explore these questions,
expand

expp = e0 + e1x+ e2x
2 + . . .

with ei ∈ Fp[z] and split expp into

even(expp) = e0 + e2x
2 + e4x

4 + . . . ,

odd(expp) = e1x+ e3x
3 + e5x

5 + . . .

as series of even and odd degrees. Clearly, both series are solutions of y′′ − y = 0
since (eix

i)′′ = ei−2x
i−2. They are, however, not xeric . Let us denote by sinhp and

coshp the xeric solutions of y′′ − y = 0. Further, for char(K) > 2, it is immediate
that

even(expp) =
1

2

(
expp(z, x) + expp(z,−x)

)
,

odd(expp) =
1

2

(
expp(z, x)− expp(z,−x)

)
.

This proves by Corollary 3.6 that both even(expp) and odd(expp) have algebraic
projections: they play the role of the classical hyperbolic sine and cosine functions
sinh and cosh in characteristic p. By Proposition 2.4, the corresponding xeric solu-
tions, sinhp and coshp, also have algebraic projections.
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The same argument applies for the equation y′′ + y = 0 and char(K) > 2. The
two series

1

2

(
expp(z, ix) + expp(z,−ix)

)
,

1

2

(
expp(z, ix)− expp(z,−ix)

)
,

where i ∈ Fp is a square root of −1, form a basis of solutions. This proves:

Proposition 6.1. The projections of coshp, sinhp, cosp, sinp are all algebraic.

The next observation is somewhat more surprising.

Proposition 6.2. Let sinhp and coshp denote the xeric solutions of y′′− y = 0 with
respect to the local exponents ρ1 = 1 and ρ2 = 1. Then the following identity holds,

expp = coshp+
1

1− σp
sinhp,

where σ(x) = x+ xp + xp
2
+ . . .

Remark 6.3. In this formula, there is an asymmetry between sinhp and coshp. On
the other hand, by definition the symmetric formula expp = even(expp)+odd(expp)
holds.

Proof. The functions sinhp and coshp, as xeric solutions, are uniquely determined as
the solutions of y′′ = y with ⟨sinhp⟩0,0 = 0, ⟨sinhp⟩1,0 = 1 respectively ⟨coshp⟩0,0 =
1, ⟨coshp⟩1,0 = 0.

Write evenp and oddp for even(expp) and odd(expp). Note that ⟨expp⟩0,0 = 1
and consequently ⟨oddp⟩0,0 = 0 and ⟨evenp⟩0,0 = 1. A short computation shows that

sinhp = oddp ·
x

⟨oddp⟩1,0

and

coshp = evenp− sinhp
⟨evenp⟩1,0

x
= evenp− oddp

⟨evenp⟩1,0
⟨oddp⟩1,0

,

since for example〈
oddp ·

x

⟨oddp⟩1,0

〉
1,0

= ⟨oddp⟩1,0 ·
x

⟨oddp⟩1,0
= x.

hold. As expp = oddp+evenp we obtain

expp = coshp+
1

x
sinhp ·⟨oddp+evenp⟩1,0.

We set

K :=
1

x
⟨oddp+evenp⟩1,0 =

1

x
⟨expp⟩1,0.

and we are left to show that K =
1

1− σp
.
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Recall the infinite product decomposition of the solution ẽxpp = h0 ·h1 ·h2 · · · of
y′ = y, where hi = H((−1)igi), the gi are defined recursively and H is a polynomial
satisfying H(s) = (1− sp−1)H ′(s), see Lemma 3.2. Then ẽxpp = expp⟨ẽxpp⟩0,0 and
substituting in the definition of K we obtain

xK⟨ẽxpp⟩0,0 = ⟨ẽxpp⟩1,0.

We have the equality

⟨ẽxpp⟩0,0 = ⟨h0⟩0,0 · ⟨h−1
0 ẽxpp⟩0,0.

Indeed, h−1
0 ẽxpp = h1 · h2 · · · is a series in xp with coefficients in Fp(z1, z2, . . .) and

such that π0
(
h−1
0 ẽxpp

)
= 1. Moreover, h0 is a series in x only. Therefore a monomial

in ⟨ẽxpp⟩0,0 can be written uniquely as a product of a monomial in ⟨h0⟩0,0 and a

monomial in ⟨h−1
0 ẽxpp⟩0,0.

Similarly we obtain

⟨ẽxpp⟩1,0 = ⟨h0⟩1,0 · ⟨h−1
0 ẽxpp⟩0,0

and consequently

xK⟨ẽxpp⟩0,0 = ⟨h0⟩1,0 · ⟨h−1
0 ẽxpp⟩0,0 = ⟨h0⟩1,0 · ⟨ẽxpp⟩0,0 · ⟨h0⟩−1

0,0.

Using that ⟨h0⟩1,0 = x⟨h′0⟩0,0 we get K = ⟨h′0⟩0,0⟨h0⟩
−1
0,0. Recall that h0 = H(σ) and

thus, by Lemma 3.2 and the identity σ − σp = x we have

h′0
h0

=
σ

σ − σp
=

σ

x
.

Moreover,

⟨h′0⟩0,0 =
〈
h0σ

x

〉
0,0

= ⟨h0⟩0,0 + σp

〈
h0
x

〉
0,0

= ⟨h0⟩0,0 + σp⟨h′0⟩0,0

and thus K =
1

1− σp
.

The considerations in this chapter motivate to investigate the following two prob-
lems. Firstly, the concept of xeric series is intended to select among the numerous
solutions of a differential equation some “distinguished” and hence unique ones.
However, the choice of this basis is not as “natural” as one could hope for, a testi-
mony of which is the asymmetric formula in Proposition 6.2. Also the exponential
function ẽxpp, characterized by Proposition 3.7, and the solutions even(expp) and
odd(expp) of the differential equation y + y′′ = 0 have noticeable properties among
the solutions of their respective equations. So the quest for truly distinguished and
natural solutions remains open.

Secondly, Problem 1.1, or, equivalently, Problem 2.6, has been solved for the
second order differential equations y′′ = y and y′′ = −y in this last section, proving
the desired algebraicity. For arbitrary linear differential equations of order greater
than or equal to two it is still unclear if the projections of suitably chosen solutions
are again algebraic.
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